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Abstract  

The contribution is focused on technical implementation of controlling a small mobile 3Pi 

robot in a maze along a predefined guide line where the control of the acquired direction of the 

robot’s movement was provided by a neural network. The weights (memory) of the neuron were 

calculated using a feedforward neural network learning via the Back-propagation method. This 

article fastens on the paper by the title "Movement control of a small mobile 3-pi robot in a 

maze using artificial neural network", where Hebbian learning was used for a single-layer 

neural network. The reflectance infra-red sensors performed as input sensors. The result of this 

research is the evaluation based on the experiments that served to compare different training 

sets with the learning methods when moving a mobile robot in a maze.  
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INTRODUCTION  

Autonomous vehicles and mobile robot movement control keep attracting the attention for 

decades, namely owing to their key role in meeting navigation requirements in the conditions 

unsuitable or dangerous for humans. The robot control subsystem can be implemented by the 

software which evaluates the data from the input sensors based on various software conditions 

(if, switch), where the input data (input vector) from the robot sensors are assigned the required 

outputs (e.g. motors control). Also, the control can be ensured by applying the PID controllers, 

where the input data is compared to the anticipated value; the difference of those values 
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determines the size of the feedback control e.g. motors [1–3]. An example of applying the PID 

control can be seen in Figure 1. 

 

Fig. 1 A scheme of electric motor control using a PID controller 

 

Fundamental navigation problems such as recognition or adaptation are analogous to 

cognitive tasks of human brain. An artificial neural network (NN) which represents a system of 

parallel distributed processing elements (neurons) connected in a graph topology can represent 

a way to deal with them [1,4]. After learning, the neural network can express the knowledge 

implicitly in the weights associated to the inputs of neuron [5]. Neuron memory in the terms of 

calculated weights depends on the data from the input sensors (input vector) and the anticipated 

outputs in the process of neurons learning. During robot’s operation, the control subsystem 

calculates the robot’s response to the input vectors, based on the weights and input vector. 

Monitoring the robot position requires application of a suitable sensing method. A wide-

ranging overview of sensors classification, their characteristics, and utilization of laser, sonar, 

and infrared sensors for detecting position was published e.g. in [2]. Reflectance infra-red 

sensors or a single-line video camera are used to detect the guide line. The method of creating 

a map of the environment is also used for the fastest possible movement along the guide line 

[6]. Motion subsystem sensors, i.e. encoders, are used to calculate the travelled distance. The 

sensors belonging to the robot motion subsystem are used to help navigate the robot. The most 

widespread method of navigation is odometry [1, 3]. Applying that method, the robot updates 

its position and records it on a map of the environment. With the environment map, the robotic 

car can go very quickly along the guide line. A brief description of some effective maze 

exploration algorithms is presented in [7]. The authors also provided details of specification for 

a maze solving robotic vehicle equipped with Arduino Uno platform. It possesses three 

ultrasonic sensors, two electro-mechanical encoders, and a motion tracking device with 3-axis 

gyroscope and 3-axis accelerometer for detection of position in the maze. 

  MATERIALS AND METHODOLOGY OF EXPERIMENT  

Learning NN with Back-Propagation method  
 
Generally, feedforward artificial neural networks (Multilayer perceptrons - MLPs) are used 

to solve linearly non-separable tasks [8]. The MLP comprises an input layer, hidden layers, and 

an output layer. The topology is depicted in Figure 2. The sigmoid-shaped function is most 

often used as the activation function in the form of (1) 

 

        y=1/(1+e-λz).                                                            (1) 

 

In feedforward neural networks, the response of the output layer of neurons to the input 

vector is determined by the forward propagation of the signal in a few steps.  

First, the neurons of the input layer are excited. Then, these excitations are brought by 

means of bonds to the next layer and adjusted via synaptic weights. Finally, each neuron 

belonging to the higher layer performs the sum of signals from the lower layer neurons, and it 

is excited to the level given by its activation function.  
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The process takes place throughout all layers up to the output layer where excited states of 

all neurons of the output layer are finally obtained. Information flows through the network via 

fully connected layers. 

 

 

Fig. 2 Scheme of multilayer perceptron. Adapted from [1] 

 

Training the applied NN is based on the neuron weights adaptation. We used the most well-

known and effective algorithm for learning the MLP, that is the Back-propagation (BPG) 

method [8]. Back-propagation refers to the method for computing the loss function gradient. It 

utilizes supervised learning for updating weights to minimize loss function. For BPG, the loss 

function calculates the difference between the network output and its expected output, after a 

training example has propagated through the network. The actual calculation (adaptation) of 

weights and biases takes place until the learning error (difference between the expected and 

calculated value) is minimal for all input vectors X. 

 

The implementation of a neural network for the movement of a 3-Pi robotic car control 

with the BPG learning and bipolar sigmoid activation function 

 

For the implementation of NN to control the movement of mobile robot, we used a 3-Pi 

two-wheeled robotic car produced by Pololu [9] (see Figures 3 and 4 for the top and bottom 

views) to test functionality of the designed neural network. Five reflectance infra-red sensors 

were used to detect the black guide line. Since the reflection of infrared light from a black 

surface is different from that of a white one, a different voltage occurs at the infrared sensors 

output. The voltages from the sensors were digitized, and they represented the input vectors in 

the table of the expected movement of the mobile robot. An 8-bit microcontroller 

ATMEGA328P by ATMEL [9] controlled the movement of the 3-Pi robotic car. All main 

components are shown from the bottom view in Figure 4.  

A simple neural network consisting of two input and two output neurons was used to 

control the 3-Pi robot in the maze, one neuron in the output layer for each motor. As can be 

seen in Figure 5, the neural network has five inputs. The inputs are generated by infra-red 

sensors for sensing the black guide line. 

The calculated values of weights and biases were entered into the control subsystem of the 

robot. The values w1,1 to w1,5 (Figure 5) are the weights for individual inputs of the neuron 

controlling the left motor (LM). Similarly, w2,1 to w2,5 are the weights for the individual inputs 

of the right motor (RM) neuron. To ensure the desired robotic car movement in sense of motor 



10.2478/rput-2021-0023 46 

 

turning into both directions – forward and back, the applied NN was designed using the bipolar 

sigmoid (hyperbolic tangential [2]) activation function (2) with the values in the range (- 1,1).  
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The value from the range (–1, 0) ensures the back direction of an engine rotation, and the 

value from the range (0,1) the forward direction. The maximum number of iterations in the 

learning process was limited to 1000000, and learning error ∆ = 0.001. 

 

 
 

Fig. 3   Top view of a 3-Pi robotic car. Adapted from [9] 

 

 

 
 

Fig. 4   Bottom view of a 3-Pi robotic car. Adapted from [9] 
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Fig. 5 The scheme of the topology of the applied neural network   

        

For NN, we used a training set identical to the training set described in article [10]. The 

training set constructed for a well-defined robotic car movement in the maze is shown in Table 

1 and Figure 7. We can see the values of ten input vectors transmitted by five infrared sensors. 

The white area was evaluated as logical 0 by infrared sensors, the black area as logical 1, 

respectively, so all vectors had a binary representation. 

The shape of the experimental maze is displayed in Figure 6. The beginning of the lane is 

marked with the inscription "ŠTART". The end of the maze is marked with a wide transverse 

black strip. The robot went through the whole maze until it found the end (exit) of the maze. 

The robot stopped on a wide transverse black tape.  

 

 

Table 1 The training set for 3-Pi robotic car 

motion in the maze 

Order 
Training 

set 

Expected 

value for 

LM 

Expected 

value for 

RM 

1 0 0 0 0 0 -1 1 

2 0 0 1 0 0 1 1 

3 0 1 0 0 0 0.1 1 

4 0 0 0 1 0 1 0.1 

5 1 1 1 0 0 -1 1 

6 1 0 0 0 0 -1 1 

7 1 1 1 1 1 -1 1 

8 1 0 0 0 1 -1 1 

9 0 0 1 1 1 1 -1 

10 0 0 0 0 1 1 -1 
 

 
 

Fig. 6 The experimental maze. Adapted 

from [10] 
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Fig. 7   Applied input vectors which determine the movement along the line. Adapted from [10] 

RESULTS OF EXPERIMENTS 

The results of the weights calculation (neurons memory) for individual neural network with 

bipolar sigmoid activation function are presented in Table 2.  

 

Table 2 Weight coefficients of NN for 3-Pi robotic car control in the maze 

Neuron Bias Weights 

1st neuron in input layer  0.81 
w1,1=6.277; w1,2= – 0.480; w1,3= – 1.008  

w1,4= – 1.537; w1,5= –2.024 

2nd neuron in input layer – 0,89 
w2,1=5.813; w2,2= –2.034; w2,3= – 4.794  

w2,4= –1.247; w2,5=1.083; 

1st neuron in output layer – 0.83 
wo1,1= – 14.298  

wo1,2= – 3.759 

2nd neuron in output layer – 0.52 
wo2,1=11.715  

wo2,2= – 6.072 
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Figure 8 displays the comparison of expected and predicted values acquired via applied 

NN according to the order of elements of training set (presented in Table 2). The blue line 

in Figure 8 shows the anicipated values, and the red line shows the calculated values for the 

individual motors clculated via the Back-propagation method with a learning error ∆ = 0.001. 

We can see that, owing to the small learning error, the calculated weight coefficients provide 

practically the same values of the individual neurons at the output as the anticipated ones. 

 

 
 

Fig. 8 Comparison of expected (a, b) and calculated (c, d) values for the left and right motor                               

of the robotic car for each of ten elements of the used training set 

DISCUSSION  

During the movement along the black line, the robotic car sensed the reflection of infrared 

light from the space below with its infra-red sensors. The response of neural network to input 

vector are the values which are directly going to the motion subsystem of the robotic car. The 

result of this action is the movement of the mobile robot along the path.  

According to the network design process, this experiment fastens on the research described 

in article [10], yet it differs from the former one in application of a different type of the neural 

network learning (Back-propagation method) and the network topology. The designed NN 

contains no hidden layer, which is due to the limited computing power of the P328 

microprocessor and the use of bipolar sigmoid as a computing power-intensive activation 

function. Practical experiments showed that, when using Hebb's learning, a training set can 

have eleven input vectors at maximum, otherwise the training set is "linearly non-separable", 

and thus the neural network cannot be trained.  

Based on the performed experiments with the NN movement control of the smooth and 

precise movement of a 3-Pi robotic car, it is necessary to process the data from the input sensors 

quickly and as accurately as possible, with the smallest possible deviation of the calculated data 

from the expected data. The aim of the network design process was to achieve the smallest 

possible learning error when neurons were learning, so that the robot can follow the guide line 

as accurately as possible. Compared to [10], the result of the robot motion in the maze was the 
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same as that in the case when the control was based on the Hebb learning using the same training 

set.  

CONCLUSION  

The presented neural network is suitable for the movement control of a 3-Pi robot in a maze 

or along a circular or oval paths. Compared to results of the experiments performed on a single-

layer with Hebbian learning [10], the 3-Pi robotic car reliably follows the path regardless of 

using either Hebb's learning or the Back-propagation method with the same training set. The 

advantage of the back-propagation method is the possibility of using more input vectors than 

in the Hebbian case. 
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